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Interleukin-1â-converting enzyme (ICE) is the obli-
gate enzyme for processing biologically inactive pro IL-
1â to the biologically active cytokine, IL-1â.1 Since this
original discovery, the biological role of the enzyme has
broadened to include the regulation of certain apoptotic
processes, and a large family of homologs has been
identified.2 In a series of communications, we have
chronicled our research efforts on the discovery of
potent, selective, irreversible inhibitors of ICE.3-8 These
agents incorporate an aspartic acid-derived R-substi-
tuted methyl ketone as the essential enzyme recognition

element.7 The highest rates of inactivation, hence
greatest potency, are observed in the tripeptide series
i. Most recently, we disclosed the first examples of
peptidomimetic inhibitors ii of the enzyme in which the
Val-Ala unit (P3-P2 residues) was replaced by a pyrim-
idineacetic acid surrogate.6 In this final communication,
we describe the pyridazinodiazepines iii as a new
peptidomimetic class of ICE inhibitor displaying excep-
tionally high affinity for the enzyme.

Previously, we documented the hydrogen-bonding
pattern between ICE and its peptide-based inhibitors i
by conducting an N-methyl scan of the tripeptide
backbone.4 These results demonstrated that the P1 and
P3 amido hydrogens were required for high-affinity
binding, leading to the replacement of P3-P2 residues
in i with a pyrimidine acetyl mimetic6,9 as in ii.
Although the provision for correct hydrogen bonding
exists in ii, the potency in this class did not strictly
coincide with that of the tripeptide. For example in the
tripeptide series, increased rates of inactivation are
observed upon exchange of the N-terminal benzyloxy-
carbonyl (1: R ) Z) to the 4-(methylthio)benzoyl group
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(2: R ) 4-SMePhC(O)), but a similar trend in potency
is not observed in the analogous pyrimidine acetyl pair
5 and 6 (Chart 1). One explanation for the divergence
in SAR was thought to be due to the conformational
constraint imposed by the sp2 center in the pyrimidine
acetic acid series, which may lead to suboptimal pre-
sentation of the P3 amide and side chain to the enzyme.10a
In an attempt to find a mimetic with enhanced

potency relative to ii, we synthesized the benzoxapine-
acetamides11,12 iv (Chart 2). One key difference be-
tween the compounds iv and those of series ii is that
the terminal NH is attached to an sp3 center. This is
more analogous to the presentation of the P3 valine
residue in the tripeptide inhibitors. However, the
second-order rate constants of inactivation for the
benzoxapine series are poorer than either series i or ii
(Chart 1). Upon direct comparison, the inactivation
rates for the benzoxapine-based inhibitors 8 and 9 range
from ca. one-third to one-tenth that of the pyrimidineac-
etamide (5 and 7) and tripeptide analogs (3 and 4).13 A
possible rationale for the attenuated performance of the
benzoxapine acetic acid and the pyrimidine acetic acid
mimetics relative to the tripeptides i (Chart 2) may lie
with the absence of a formal P2 side chain. The fused
aryl ring in the benzoxapine and the 2-aryl ring in the
pyrimidine series are hypothesized to project into the
surrounding solvent with minimal interaction with the
enzyme’s S2 binding pocket.10b,14 It was thought that
it may be desirable to have such appendages displayed
to the enzyme directly from the R-carbon of an amide
backbone, thereby more closely resembling the topog-
raphy of the P2 residue. For this reason, we opted to
consider constrained dipeptides as second-generation
mimetics having putative P2 and P3 side chain func-
tionality.
As a starting point for mimetic selection, inhibitors

containing a Freidinger lactam15 v and a bicyclic turned
dipeptide (BTD)16 vi were synthesized12 (Chart 2) and
evaluated against ICE. Both of these mimetics satisfied
our design criteria with regard to hydrogen-bonding
functionality and P2 and P3 R-side chain functionality.
Once again, however, the kobs/[I] values were disap-
pointing. Inhibitors 10 and 11 display inactivation rates
of approximately 50 000 M-1 s-1, compared with the
corresponding tripeptide 4 of 340 000 M-1 s-1 (Chart

1). Because the NH and side chain requirements were
believed to be adequately represented by structures 10
and 11, it became apparent that the bioactive conforma-
tion of the amide backbone in the tripeptide series i is
not achieved in 10 and 11, and a further survey of P2-
P3 surrogates was necessary.
Concomitant with this peptidomimetic effort, we

continued our studies in the tripeptide series. Upon
introducing cyclic amino acids into the P2 position, it
was discovered that the pipecolic acid-containing tri-
peptide 12 (kobs/[I] ) 270 000 M-1 s-1) is equally potent
to Z-Val-Ala-Asp-CH2PTP (kobs/[I] ) 280 000 M-1 s-1;

Chart 1. Second-Order Rate Constants of Inactivation (kobs/[I]) of ICE for Peptidomimetic Inhibitors 5-11 and
Reference Peptides 1-4 and 12

Chart 2. Evolution in Peptidomimetic Design Leading
to the Pyridazinodiazepine-based ICE Inhibitorsa

a Bold arrows indicate H-bond functionality required for high
affinity binding.
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Chart 1).4 This observation then led us to consider the
pyridazinodiazepine iii as a potential P2-P3 peptido-
mimetic for ICE (Chart 2).17 Mimetics iii possess the
salient aspartic acid P1 residue and an optimal six-
membered cyclic residue at P2 to which is fused the P3
side chain. Inhibitor class iii also displays the requisite
P1 and P3 amide nitrogens necessary for productive
hydrogen bonding in the active site.4,10c

Rapid time-dependent inactivation of ICE was ob-
served for the class of pyridazinodiazepines 13-21, with
rates comparable to or exceeding those determined for
the tripeptides (Table 1).12 The second-order rate con-
stant of inactivation for the DCB analog 13 is 572 000
M-1 s-1 versus the DCB tripeptide 3 of 430 000 M-1 s-1.
Similar rates of inactivation are observed for analogs
in the PTP (14, 413 000 M-1 s-1 versus 1, 280 000 M-1

s-1) and (4-Cl)PTP analog series (15, 440 000 M-1 s-1

versus 4, 340 000 M-1 s-1). The SAR of the P3 N-
terminal capping groups in series iii parallels the

tripeptides, providing evidence that series i and iii
share a common binding orientation in the active site.
N-Terminal groups containing basic functionality18
result in attenuated inactivation rates for both the
pyridazinodiazepines (16-18 versus 13; 19 versus 15)
and the tripeptides (22-23 versus 1). In contrast,
enhanced inactivation rates are observed for N-terminal
groups possessing acidic functionality in both series (20,
21, versus 15 and 24 versus 1). In fact, the pyrida-
zinodiazepine 20 with the 4-[(carboxymethyl)thio]ben-
zoyl capping group displays an exceptionally rapid
inactivation rate of 1 220 000 M-1 s-1.21

A selection of aspartic acid aldehydes 25-28 contain-
ing the pyridazinodiazepine mimetic were also synthe-
sized12a,19 and evaluated as reversible inhibitors of ICE.
As revealed in Table 2, aldehydes 25-28 are potent
reversible inhibitors with inhibition constants ranging
from 1 to 25 nM. Inhibitors 26 and 28 (Ki ) 1.0 nM,
each) are 15-fold more potent than the corresponding

Table 1. Second-Order Rate Constants for Inactivation of ICE by Inhibitors 13-21 and Reference Peptides 1, 3, 4, and 22-24
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tripeptide aldehyde and some 6-fold more potent than
the tetrapeptide 30. Within the mimetic class, potency
enhancement is observed for acidic N-terminal func-
tionality (25 Ki ) 25 nM versus 26 Ki ) 1 nM),
analogous to the irreversible agents. A 5-fold increase
in affinity is seen for the 2-fluorobenzamide 28 (Ki ) 1
nM) versus the unsubstituted benzamide 27 (Ki ) 5
nM).21,22
In further studies, aldehyde 27 was selected as a

candidate for oral administration in the dog. Compound
27 is stable in ex vivo liver and intestinal slice assays
and possesses a plasma clearance rate in the dog of ca.
7 (mL/min)/kg. In a standard iv/po dog model, inhibitor
27 is orally bioavailable to the extent of 12% and 16%
(determination in two dogs).23 Pyridazinodiazepine 27
is a selective inhibitor of IL-1â versus IL-1R, TNF-R,
and IL-6 in monocytes (IC50 ) 1.0 µM).24a It also in-
hibits IL-1â production by >95% in a mouse model of
biochemical efficacy at a single 100 mg/kg dose given
by ip administration.24b
In summary, the pyridazinodiazepine is a suitable

P2-P3 mimetic for the construction of high-affinity ICE
inhibitors. The utility of the mimetic is demonstrated
in both irreversible 13-21 (Table 1) and reversible
inhibitors 25-28 (Table 2). The defining experiments
leading to the discovery of the pyridazinodiazepine
mimetic were 3-fold. First, an N-methyl scan of the
amide backbone in the tripeptide series i established
the importance of the P1 and P3 amido hydrogens for
enzyme binding. On the basis of this observation, the
hypothesis that the enzyme engages its peptide sub-
strate via a â-sheet was developed.4 Second, a cyclic
amino acid scan at position P2 in the tripeptide series
established that pipecolic acid was an efficient surrogate

for valine.4 Finally, a survey of constrained dipeptide
mimetics whose selection criteria satisfied the â-sheet
hypothesis was conducted. Specifically, the selected
mimetics displayed the essential P3 NH, P3 C(O), and
P1 NH hydrogen-bonding functionality,4 ultimately rely-
ing on pipecolic acid as a template for pyridazinodiaz-
epine synthesis.
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